
Benchmarks
Release 1.0.2.dev23+g97dc540

Mathïs Fédérico

Mar 02, 2023

API

1 Installation 5

2 Documentation 7

3 Contribute 9

4 Support 11

5 License 13

6 Table Of Content 15
6.1 Benchmarks’s Core . 15
6.2 Callbacks . 19

Index 25

i

ii

Benchmarks, Release 1.0.2.dev23+g97dc540

Benchmarks is a tool to monitor and log reinforcement learning experiments. You build/find any compatible agent
(only need an act method), you build/find a gym environment, and benchmarks will make them interact together !
Benchmarks also contains both tensorboard and weights&biases integrations for a beautiful and sharable experiment
tracking ! Also, Benchmarks is cross platform compatible ! That’s why no agents are built-in benchmarks itself.

You can build and run your own Agent in a clear and sharable manner !

import benchmarks as rl
import gym

class MyAgent(rl.Agent):

def act(self, observation, greedy=False):
""" How the Agent act given an observation """
...
return action

def learn(self):
""" How the Agent learns from his experiences """
...
return logs

def remember(self, observation, action, reward, done, next_observation=None, info={},␣
→˓**param):

""" How the Agent will remember experiences """
...

env = gym.make('FrozenLake-v0', is_slippery=True) # This could be any gym-like␣
→˓Environment !
agent = MyAgent(env.observation_space, env.action_space)

pg = rl.Playground(env, agent)
pg.fit(2000, verbose=1)

Note that ‘learn’ and ‘remember’ are optional, so this framework can also be used for baselines !

You can logs any custom metrics that your Agent/Env gives you and even chose how to aggregate them through different
timescales. See the metric codes for more details.

metrics=[
('reward~env-rwd', {'steps': 'sum', 'episode': 'sum'}),
('handled_reward~reward', {'steps': 'sum', 'episode': 'sum'}),
'value_loss~vloss',
'actor_loss~aloss',
'exploration~exp'

]
(continues on next page)

API 1

https://github.com/MathisFederico/LearnRL/actions/workflows/python-tests.yml
https://github.com/MathisFederico/LearnRL/actions/workflows/python-pylint.yml
https://github.com/MathisFederico/LearnRL/actions/workflows/python-coverage.yml
https://github.com/MathisFederico/LearnRL/actions/workflows/python-coverage.yml
https://www.gnu.org/licenses/
https://learnrl.readthedocs.io/en/latest/callbacks.html#metric-codes

Benchmarks, Release 1.0.2.dev23+g97dc540

(continued from previous page)

pg.fit(2000, verbose=1, metrics=metrics)

The Playground will allow you to have clean logs adapted to your will with the verbose parameter:

• Verbose 1
[episodes cycles - If your environment makes a lot of quick episodes.]

• Verbose 2

[episode - To log each individual episode.]

• Verbose 3
[steps cycles - If your environment makes a lot of quick steps but has long episodes.]

• Verbose 4

2 API

Benchmarks, Release 1.0.2.dev23+g97dc540

[step - To log each individual step.]

• Verbose 5
[detailled step - To debug each individual step (with observations, actions, . . .).]

The Playground also allows you to add Callbacks with ease, for example the WandbCallback to have a nice experiment
tracking dashboard using weights&biases!

API 3

https://wandb.ai/site

Benchmarks, Release 1.0.2.dev23+g97dc540

4 API

CHAPTER

ONE

INSTALLATION

Install Benchmarks by running:

pip install benchmarks

5

Benchmarks, Release 1.0.2.dev23+g97dc540

6 Chapter 1. Installation

CHAPTER

TWO

DOCUMENTATION

See the latest complete documentation for more details.
See the development documentation to see what’s coming !

7

https://learnrl.readthedocs.io/en/latest/
https://learnrl.readthedocs.io/en/dev/

Benchmarks, Release 1.0.2.dev23+g97dc540

8 Chapter 2. Documentation

CHAPTER

THREE

CONTRIBUTE

• Issue Tracker.

• Projects.

9

https://github.com/MathisFederico/LearnRL/issues
https://github.com/MathisFederico/LearnRL/projects

Benchmarks, Release 1.0.2.dev23+g97dc540

10 Chapter 3. Contribute

CHAPTER

FOUR

SUPPORT

If you are having issues, please contact us on Discord.

11

https://discord.gg/z9dd4s5

Benchmarks, Release 1.0.2.dev23+g97dc540

12 Chapter 4. Support

CHAPTER

FIVE

LICENSE

The project is licensed under the GNU LGPLv3 license.
See LICENCE, COPYING and COPYING.LESSER for more details.

13

Benchmarks, Release 1.0.2.dev23+g97dc540

14 Chapter 5. License

CHAPTER

SIX

TABLE OF CONTENT

6.1 Benchmarks’s Core

Benchmarks is based on those core objects: Playground, Agent, TurnEnv.

They are all linked by the Playground, as showned by this:

6.1.1 Playground

class Playground(environement, agents, agents_order=None)
A playground is used to run interactions between an environement and agent(s)

env

Environement in which the agent(s) will play.

Type
gym.Env

agents

List of agents to play.

Type
list of benchmarks.Agent

A playground is used to run agent(s) on an environement

Parameters

• env – Environement in which the agent(s) will play.

• agents (Union[Agent, List[Agent]]) – List of agents to play (can be only one agent).

run(episodes, render=True, render_mode='human', learn=True, steps_cycle_len=10,
episodes_cycle_len=0.05, verbose=0, callbacks=None, logger=None, reward_handler=None,
done_handler=None, **kwargs)
Let the agent(s) play on the environement for a number of episodes.

Additional arguments will be passed to the default logger.

Parameters

• episodes (int) – Number of episodes to run.

• render (bool) – If True, call |gym.render| every step.

• render_mode (str) – Rendering mode. One of {‘human’, ‘rgb_array’, ‘ansi’} (see
|gym.render|).

15

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Benchmarks, Release 1.0.2.dev23+g97dc540

• learn (bool) – If True, call Agent.learn() every step.

• steps_cycle_len (int) – Number of steps that compose a cycle.

• episode_cycle_len – Number of episodes that compose a cycle. If between 0 and 1,
this in understood as a proportion.

• verbose (int) – The verbosity level: 0 (silent), 1 (cycle), 2 (episode), 3 (step_cycle), 4
(step), 5 (detailed step).

• callbacks (Optional[List[Callback]]) – List of Callback to use in runs.

• reward_handler (Union[Callable, RewardHandler, None]) – A callable to redifine
rewards of the environement.

• done_handler (Union[Callable, DoneHandler, None]) – A callable to redifine the en-
vironement end.

• logger (Optional[Callback]) – Logging callback to use. If None use the default
Logger.

fit(episodes, **kwargs)
Train the agent(s) on the environement for a number of episodes.

test(episodes, **kwargs)
Test the agent(s) on the environement for a number of episodes.

set_agents_order(agents_order)
Change the agents_order.

This will update the agents order.

Parameters
agents_order (list) – New agents indices order. Default is range(n_agents).

Return type
list

Returns
The updated agents ordered indices list.

6.1.2 Agent

class Agent

A general structure for any learning agent.

abstract act(observation, greedy=False)
How the Agent act given an observation.

Parameters

• observation – The observation given by the environment.

• greedy (bool) – If True, act greedely (without exploration).

Return type
Union[int, float, ndarray]

learn()

How the Agent learns from his experiences.

16 Chapter 6. Table Of Content

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
http://gym.openai.com/docs/#environments
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Benchmarks, Release 1.0.2.dev23+g97dc540

Returns
The agent learning logs (Has to be numpy or python).

Return type
logs

remember(observation, action, reward, done, next_observation=None, info=None, **param)

How the Agent will remember experiences.

Often, the agent will use a perfect hash functions to store observations efficiently.

Example

>>> self.memory.remember(self.observation_encoder(observation),
... self.action_encoder(action),
... reward, done,
... self.observation_encoder(next_observation),
... info, **param)

6.1.3 TurnEnv

class TurnEnv

Turn based multi-agents gym environment.

A layer over the gym environment class able to handle turn based environments with multiple agents.

Note: A TurnEnv must be in a Playground in order to work !

The only add in TurnEnv is the method “turn”, On top of the main API basic methodes (see environment): * step:
take a step of the environment given the action of the active player * reset: reset the environment and returns the
first observation * render * close * seed

action_space

The Space object corresponding to actions.

Type
space

observation_space

The Space object corresponding to observations.

Type
space

abstract step(action)
Perform a step of the environement.

Parameters
action – The action taken by the agent who’s turn was given by turn().

Returns
The observation to give to the Agent. reward (float): The reward given to the Agent for this
step. done (bool): True if the environement is done after this step. info (dict): Additional
informations given by the environment.

6.1. Benchmarks’s Core 17

https://en.wikipedia.org/wiki/Perfect_hash_function
http://gym.openai.com/docs/#environments
http://gym.openai.com/docs/#environments
http://gym.openai.com/docs/#environments
http://gym.openai.com/docs/#environments
http://gym.openai.com/docs/#spaces
http://gym.openai.com/docs/#spaces
http://gym.openai.com/docs/#environments

Benchmarks, Release 1.0.2.dev23+g97dc540

Return type
observation

abstract turn(state)
Give the turn to the next agent to play.

Assuming that agents are represented by a list like range(n_player) where n_player is the number of players
in the game.

Parameters
state – The state of the environement. Should be enough to determine which is the next
agent to play.

Returns
The next player id

Return type
agent_id (int)

abstract reset()

Reset the environement and returns the initial state.

Returns
The observation for the first Agent to play

Return type
observation

6.1.4 Handlers

RewardHandler

class RewardHandler

Helper to modify the rewards given by the environment.

You need to specify the method:

• reward(self, observation, action, reward, done, info, next_observation) -> float

You can also define __init__ and reset() if you want to store anything.

abstract reward(observation, action, reward, done, info, next_observation, logs)
Replace the environment reward.

Often used to scale rewards or to do reward shaping.

Parameters

• observation – Current observation.

• action – Current action.

• reward – Current reward.

• done – done given by the environment.

• info – Addition informations given by the environment.

• next_observation – Next observation.

Return type
float

18 Chapter 6. Table Of Content

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Benchmarks, Release 1.0.2.dev23+g97dc540

reset()

Reset the RewardHandler

Called automaticaly in Playground.run(). Useful only if variables are stored by the RewardHandler.

DoneHandler

class DoneHandler

Helper to modify the done given by the environment.

You need to specify the method:

• done(self, observation, action, reward, done, info, next_observation) -> bool

You can also define __init__ and reset() if you want to store anything.

abstract done(observation, action, reward, done, info, next_observation, logs)
Replace the environment done.

Often used to make episodes shorter when the agent is stuck for example.

Parameters

• observation – Current observation.

• action – Current action.

• reward – Current reward.

• done – done given by the environment.

• info – Addition informations given by the environment.

• next_observation – Next observation.

Return type
bool

reset()

Reset the DoneHandler

Called automaticaly in Playground.run(). Used only if variables are stored by the DoneHandler.

6.2 Callbacks

6.2.1 Callback API

class Callback

An object to call functions while the Playground is running. You can define the custom functions on_{position}
where position can be :

>>> run_begin
... episodes_cycle_begin
... episode_begin
... steps_cycle_begin
... step_begin
... # env.step()

(continues on next page)

6.2. Callbacks 19

https://docs.python.org/3/library/functions.html#bool

Benchmarks, Release 1.0.2.dev23+g97dc540

(continued from previous page)

... step_end

... steps_cycle_end

... # done==True

... episode_end

... episodes_cycle_end

... run_end

set_params(params)
Sets run parameters

set_playground(playground)
Sets reference to the used playground

on_step_begin(step, logs=None)
Triggers on each step beginning

Parameters

• step (int) – current step.

• logs (Optional[dict]) – current logs.

on_step_end(step, logs=None)
Triggers on each step end

Parameters

• step (int) – current step.

• logs (Optional[dict]) – current logs.

on_steps_cycle_begin(step, logs=None)
Triggers on each step cycle beginning

Parameters

• step (int) – current step.

• logs (Optional[dict]) – current logs.

on_steps_cycle_end(step, logs=None)
Triggers on each step cycle end

Parameters

• step (int) – current step.

• logs (Optional[dict]) – current logs.

on_episode_begin(episode, logs=None)
Triggers on each episode beginning

Parameters

• episode (int) – current episode.

• logs (Optional[dict]) – current logs.

on_episode_end(episode, logs=None)
Triggers on each episode end

Parameters

20 Chapter 6. Table Of Content

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict

Benchmarks, Release 1.0.2.dev23+g97dc540

• episode (int) – current episode.

• logs (Optional[dict]) – current logs.

on_episodes_cycle_begin(episode, logs=None)
Triggers on each episode cycle beginning

Parameters

• episode (int) – current episode.

• logs (Optional[dict]) – current logs.

on_episodes_cycle_end(episode, logs=None)
Triggers on each episode cycle end

Parameters

• episode (int) – current episode.

• logs (Optional[dict]) – current logs.

on_run_begin(logs=None)
Triggers on each run beginning

Parameters
logs (Optional[dict]) – current logs.

on_run_end(logs=None)
Triggers on run end

Parameters
logs (Optional[dict]) – current logs.

6.2.2 Logger

class Logger(metrics=None, detailed_step_metrics=None, episode_only_metrics=None, titles_on_top=True)
Default logger in every Playground run.

This will print relevant informations in console.

You can regulate the flow of informations with the argument verbose in run() directly :

• 0 is silent (nothing will be printed)

• 1 is cycles of episodes (aggregated metrics over multiple episodes)

• 2 is every episode (aggregated metrics over all steps)

• 3 is cycles of steps (aggregated metrics over some steps)

• 4 is every step

• 5 is every step detailed (all metrics of all steps)

You can also replace it with you own Logger, with the argument logger in run().

To build you own logger, you have to chose what metrics will be displayed and how will metrics be aggregated
over steps/episodes/cycles. To do that, see the Metric codes format.

Default logger in every Playground run.

Parameters

6.2. Callbacks 21

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict

Benchmarks, Release 1.0.2.dev23+g97dc540

• metrics (Optional[List[Union[str, tuple]]]) – Metrics to display and how to aggregate
them.

• detailed_step_metrics (Optional[List[str]]) – Metrics to display only on detailed
steps.

• episode_only_metrics (Optional[List[str]]) – Metrics to display only on episodes.

• titles_on_top (bool) – If true, titles will be displayed on top and not at every line.

on_step_begin(step, logs=None)
Triggers on each step beginning

Parameters

• step – current step.

• logs – current logs.

on_step_end(step, logs=None)
Triggers on each step end

Parameters

• step – current step.

• logs – current logs.

on_steps_cycle_begin(step, logs=None)
Triggers on each step cycle beginning

Parameters

• step – current step.

• logs – current logs.

on_steps_cycle_end(step, logs=None)
Triggers on each step cycle end

Parameters

• step – current step.

• logs – current logs.

on_episode_begin(episode, logs=None)
Triggers on each episode beginning

Parameters

• episode – current episode.

• logs – current logs.

on_episode_end(episode, logs=None)
Triggers on each episode end

Parameters

• episode – current episode.

• logs – current logs.

22 Chapter 6. Table Of Content

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Benchmarks, Release 1.0.2.dev23+g97dc540

on_episodes_cycle_begin(episode, logs=None)
Triggers on each episode cycle beginning

Parameters

• episode – current episode.

• logs – current logs.

on_episodes_cycle_end(episode, logs=None)
Triggers on each episode cycle end

Parameters

• episode – current episode.

• logs – current logs.

on_run_begin(logs=None)
Triggers on each run beginning

Parameters
logs – current logs.

6.2.3 Metric codes

To fully represent a metric and how to aggregate it, we use metric codes as such:

<logs_key>~<display_name>.<aggregator_function>

Where logs_key is the metric key in logs

Display_name is the optional name that will be displayed in console.
If not specified, the logs_key will be displayed.

Finaly aggregator_function is one of { avg, sum, last }:

• avg computes the average of the metric while aggregating. (default)

• sum computes the sum of the metric while aggregating.

• last only shows the last value of the metric.

Examples

• reward~rwd.sum will aggregate the sum of rewards and display Rwd

• loss will show the average loss as Loss (no surname)

• dt_step~ will show the average step_time with no name (surname is ‘’)

• exploration~exp.last will show the last exploration value as Exp

6.2. Callbacks 23

Benchmarks, Release 1.0.2.dev23+g97dc540

24 Chapter 6. Table Of Content

INDEX

A
act() (Agent method), 16
action_space (TurnEnv attribute), 17
Agent (class in benchmarks.agent), 16
agents (Playground attribute), 15

C
Callback (class in benchmarks.callbacks), 19

D
done() (DoneHandler method), 19
DoneHandler (class in benchmarks.playground), 19

E
env (Playground attribute), 15

F
fit() (Playground method), 16

L
learn() (Agent method), 16
Logger (class in benchmarks.callbacks), 21

O
observation_space (TurnEnv attribute), 17
on_episode_begin() (Callback method), 20
on_episode_begin() (Logger method), 22
on_episode_end() (Callback method), 20
on_episode_end() (Logger method), 22
on_episodes_cycle_begin() (Callback method), 21
on_episodes_cycle_begin() (Logger method), 22
on_episodes_cycle_end() (Callback method), 21
on_episodes_cycle_end() (Logger method), 23
on_run_begin() (Callback method), 21
on_run_begin() (Logger method), 23
on_run_end() (Callback method), 21
on_step_begin() (Callback method), 20
on_step_begin() (Logger method), 22
on_step_end() (Callback method), 20
on_step_end() (Logger method), 22
on_steps_cycle_begin() (Callback method), 20

on_steps_cycle_begin() (Logger method), 22
on_steps_cycle_end() (Callback method), 20
on_steps_cycle_end() (Logger method), 22

P
Playground (class in benchmarks.playground), 15

R
remember() (Agent method), 17
reset() (DoneHandler method), 19
reset() (RewardHandler method), 18
reset() (TurnEnv method), 18
reward() (RewardHandler method), 18
RewardHandler (class in benchmarks.playground), 18
run() (Playground method), 15

S
set_agents_order() (Playground method), 16
set_params() (Callback method), 20
set_playground() (Callback method), 20
step() (TurnEnv method), 17

T
test() (Playground method), 16
turn() (TurnEnv method), 18
TurnEnv (class in benchmarks.envs), 17

25

	Installation
	Documentation
	Contribute
	Support
	License
	Table Of Content
	Benchmarks’s Core
	Playground
	Agent
	TurnEnv
	Handlers
	RewardHandler
	DoneHandler

	Callbacks
	Callback API
	Logger
	Metric codes
	Examples

	Index

